3.1660 \(\int \frac{1}{\sqrt{d+e x} (a^2+2 a b x+b^2 x^2)^2} \, dx\)

Optimal. Leaf size=147 \[ -\frac{5 e^2 \sqrt{d+e x}}{8 (a+b x) (b d-a e)^3}+\frac{5 e^3 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{8 \sqrt{b} (b d-a e)^{7/2}}+\frac{5 e \sqrt{d+e x}}{12 (a+b x)^2 (b d-a e)^2}-\frac{\sqrt{d+e x}}{3 (a+b x)^3 (b d-a e)} \]

[Out]

-Sqrt[d + e*x]/(3*(b*d - a*e)*(a + b*x)^3) + (5*e*Sqrt[d + e*x])/(12*(b*d - a*e)^2*(a + b*x)^2) - (5*e^2*Sqrt[
d + e*x])/(8*(b*d - a*e)^3*(a + b*x)) + (5*e^3*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(8*Sqrt[b]*(b
*d - a*e)^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0718597, antiderivative size = 147, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {27, 51, 63, 208} \[ -\frac{5 e^2 \sqrt{d+e x}}{8 (a+b x) (b d-a e)^3}+\frac{5 e^3 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{8 \sqrt{b} (b d-a e)^{7/2}}+\frac{5 e \sqrt{d+e x}}{12 (a+b x)^2 (b d-a e)^2}-\frac{\sqrt{d+e x}}{3 (a+b x)^3 (b d-a e)} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*(a^2 + 2*a*b*x + b^2*x^2)^2),x]

[Out]

-Sqrt[d + e*x]/(3*(b*d - a*e)*(a + b*x)^3) + (5*e*Sqrt[d + e*x])/(12*(b*d - a*e)^2*(a + b*x)^2) - (5*e^2*Sqrt[
d + e*x])/(8*(b*d - a*e)^3*(a + b*x)) + (5*e^3*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(8*Sqrt[b]*(b
*d - a*e)^(7/2))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d+e x} \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx &=\int \frac{1}{(a+b x)^4 \sqrt{d+e x}} \, dx\\ &=-\frac{\sqrt{d+e x}}{3 (b d-a e) (a+b x)^3}-\frac{(5 e) \int \frac{1}{(a+b x)^3 \sqrt{d+e x}} \, dx}{6 (b d-a e)}\\ &=-\frac{\sqrt{d+e x}}{3 (b d-a e) (a+b x)^3}+\frac{5 e \sqrt{d+e x}}{12 (b d-a e)^2 (a+b x)^2}+\frac{\left (5 e^2\right ) \int \frac{1}{(a+b x)^2 \sqrt{d+e x}} \, dx}{8 (b d-a e)^2}\\ &=-\frac{\sqrt{d+e x}}{3 (b d-a e) (a+b x)^3}+\frac{5 e \sqrt{d+e x}}{12 (b d-a e)^2 (a+b x)^2}-\frac{5 e^2 \sqrt{d+e x}}{8 (b d-a e)^3 (a+b x)}-\frac{\left (5 e^3\right ) \int \frac{1}{(a+b x) \sqrt{d+e x}} \, dx}{16 (b d-a e)^3}\\ &=-\frac{\sqrt{d+e x}}{3 (b d-a e) (a+b x)^3}+\frac{5 e \sqrt{d+e x}}{12 (b d-a e)^2 (a+b x)^2}-\frac{5 e^2 \sqrt{d+e x}}{8 (b d-a e)^3 (a+b x)}-\frac{\left (5 e^2\right ) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b d}{e}+\frac{b x^2}{e}} \, dx,x,\sqrt{d+e x}\right )}{8 (b d-a e)^3}\\ &=-\frac{\sqrt{d+e x}}{3 (b d-a e) (a+b x)^3}+\frac{5 e \sqrt{d+e x}}{12 (b d-a e)^2 (a+b x)^2}-\frac{5 e^2 \sqrt{d+e x}}{8 (b d-a e)^3 (a+b x)}+\frac{5 e^3 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{8 \sqrt{b} (b d-a e)^{7/2}}\\ \end{align*}

Mathematica [C]  time = 0.0114543, size = 50, normalized size = 0.34 \[ \frac{2 e^3 \sqrt{d+e x} \, _2F_1\left (\frac{1}{2},4;\frac{3}{2};-\frac{b (d+e x)}{a e-b d}\right )}{(a e-b d)^4} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*(a^2 + 2*a*b*x + b^2*x^2)^2),x]

[Out]

(2*e^3*Sqrt[d + e*x]*Hypergeometric2F1[1/2, 4, 3/2, -((b*(d + e*x))/(-(b*d) + a*e))])/(-(b*d) + a*e)^4

________________________________________________________________________________________

Maple [A]  time = 0.196, size = 147, normalized size = 1. \begin{align*}{\frac{{e}^{3}}{ \left ( 3\,ae-3\,bd \right ) \left ( bxe+ae \right ) ^{3}}\sqrt{ex+d}}+{\frac{5\,{e}^{3}}{12\, \left ( ae-bd \right ) ^{2} \left ( bxe+ae \right ) ^{2}}\sqrt{ex+d}}+{\frac{5\,{e}^{3}}{8\, \left ( ae-bd \right ) ^{3} \left ( bxe+ae \right ) }\sqrt{ex+d}}+{\frac{5\,{e}^{3}}{8\, \left ( ae-bd \right ) ^{3}}\arctan \left ({b\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( ae-bd \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( ae-bd \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(b^2*x^2+2*a*b*x+a^2)^2,x)

[Out]

1/3*e^3*(e*x+d)^(1/2)/(a*e-b*d)/(b*e*x+a*e)^3+5/12*e^3/(a*e-b*d)^2*(e*x+d)^(1/2)/(b*e*x+a*e)^2+5/8*e^3/(a*e-b*
d)^3*(e*x+d)^(1/2)/(b*e*x+a*e)+5/8*e^3/(a*e-b*d)^3/((a*e-b*d)*b)^(1/2)*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1
/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.11195, size = 1805, normalized size = 12.28 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="fricas")

[Out]

[-1/48*(15*(b^3*e^3*x^3 + 3*a*b^2*e^3*x^2 + 3*a^2*b*e^3*x + a^3*e^3)*sqrt(b^2*d - a*b*e)*log((b*e*x + 2*b*d -
a*e - 2*sqrt(b^2*d - a*b*e)*sqrt(e*x + d))/(b*x + a)) + 2*(8*b^4*d^3 - 34*a*b^3*d^2*e + 59*a^2*b^2*d*e^2 - 33*
a^3*b*e^3 + 15*(b^4*d*e^2 - a*b^3*e^3)*x^2 - 10*(b^4*d^2*e - 5*a*b^3*d*e^2 + 4*a^2*b^2*e^3)*x)*sqrt(e*x + d))/
(a^3*b^5*d^4 - 4*a^4*b^4*d^3*e + 6*a^5*b^3*d^2*e^2 - 4*a^6*b^2*d*e^3 + a^7*b*e^4 + (b^8*d^4 - 4*a*b^7*d^3*e +
6*a^2*b^6*d^2*e^2 - 4*a^3*b^5*d*e^3 + a^4*b^4*e^4)*x^3 + 3*(a*b^7*d^4 - 4*a^2*b^6*d^3*e + 6*a^3*b^5*d^2*e^2 -
4*a^4*b^4*d*e^3 + a^5*b^3*e^4)*x^2 + 3*(a^2*b^6*d^4 - 4*a^3*b^5*d^3*e + 6*a^4*b^4*d^2*e^2 - 4*a^5*b^3*d*e^3 +
a^6*b^2*e^4)*x), -1/24*(15*(b^3*e^3*x^3 + 3*a*b^2*e^3*x^2 + 3*a^2*b*e^3*x + a^3*e^3)*sqrt(-b^2*d + a*b*e)*arct
an(sqrt(-b^2*d + a*b*e)*sqrt(e*x + d)/(b*e*x + b*d)) + (8*b^4*d^3 - 34*a*b^3*d^2*e + 59*a^2*b^2*d*e^2 - 33*a^3
*b*e^3 + 15*(b^4*d*e^2 - a*b^3*e^3)*x^2 - 10*(b^4*d^2*e - 5*a*b^3*d*e^2 + 4*a^2*b^2*e^3)*x)*sqrt(e*x + d))/(a^
3*b^5*d^4 - 4*a^4*b^4*d^3*e + 6*a^5*b^3*d^2*e^2 - 4*a^6*b^2*d*e^3 + a^7*b*e^4 + (b^8*d^4 - 4*a*b^7*d^3*e + 6*a
^2*b^6*d^2*e^2 - 4*a^3*b^5*d*e^3 + a^4*b^4*e^4)*x^3 + 3*(a*b^7*d^4 - 4*a^2*b^6*d^3*e + 6*a^3*b^5*d^2*e^2 - 4*a
^4*b^4*d*e^3 + a^5*b^3*e^4)*x^2 + 3*(a^2*b^6*d^4 - 4*a^3*b^5*d^3*e + 6*a^4*b^4*d^2*e^2 - 4*a^5*b^3*d*e^3 + a^6
*b^2*e^4)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b x\right )^{4} \sqrt{d + e x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(b**2*x**2+2*a*b*x+a**2)**2,x)

[Out]

Integral(1/((a + b*x)**4*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.13792, size = 315, normalized size = 2.14 \begin{align*} -\frac{5 \, \arctan \left (\frac{\sqrt{x e + d} b}{\sqrt{-b^{2} d + a b e}}\right ) e^{3}}{8 \,{\left (b^{3} d^{3} - 3 \, a b^{2} d^{2} e + 3 \, a^{2} b d e^{2} - a^{3} e^{3}\right )} \sqrt{-b^{2} d + a b e}} - \frac{15 \,{\left (x e + d\right )}^{\frac{5}{2}} b^{2} e^{3} - 40 \,{\left (x e + d\right )}^{\frac{3}{2}} b^{2} d e^{3} + 33 \, \sqrt{x e + d} b^{2} d^{2} e^{3} + 40 \,{\left (x e + d\right )}^{\frac{3}{2}} a b e^{4} - 66 \, \sqrt{x e + d} a b d e^{4} + 33 \, \sqrt{x e + d} a^{2} e^{5}}{24 \,{\left (b^{3} d^{3} - 3 \, a b^{2} d^{2} e + 3 \, a^{2} b d e^{2} - a^{3} e^{3}\right )}{\left ({\left (x e + d\right )} b - b d + a e\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="giac")

[Out]

-5/8*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^3/((b^3*d^3 - 3*a*b^2*d^2*e + 3*a^2*b*d*e^2 - a^3*e^3)*sqr
t(-b^2*d + a*b*e)) - 1/24*(15*(x*e + d)^(5/2)*b^2*e^3 - 40*(x*e + d)^(3/2)*b^2*d*e^3 + 33*sqrt(x*e + d)*b^2*d^
2*e^3 + 40*(x*e + d)^(3/2)*a*b*e^4 - 66*sqrt(x*e + d)*a*b*d*e^4 + 33*sqrt(x*e + d)*a^2*e^5)/((b^3*d^3 - 3*a*b^
2*d^2*e + 3*a^2*b*d*e^2 - a^3*e^3)*((x*e + d)*b - b*d + a*e)^3)